
Behavior Oriented Speci�cation in Gist

Martin S� Feather

USC � Information Sciences Institute
���� Admiralty Way� Marina del Rey CA ��	�	� USA

In Formal program development� IFIP TC��WG ��� State�of�the�Art Report� Lecture notes in
computer science� No
 ���� eds
� B
 Moller� H
 Partsch and S
 Schuman� Springer�Verlag� �����
pp
 ����		

Abstract

A speci�cation language suited to specifying systems that exhibit ongoing behaviors
is described and illustrated� The initial stages in the development from speci�cations in
this language towards implementations are discussed�

� Introduction

��� The Virtues of Speci�cation

In the course of software development� a formal speci�cation of the system being devel�
oped can be useful for two purposes�

� to serve as the contract between speci�er and implementor� de�ning the system to
be constructed� and

� to provide early feedback �i�e�� prior to actual development and �elding of the com�
plete system�� so that actual needs can be accurately predicted�

Speci�cation languages facilitate both these activities by disregarding implementation
concerns� particularly those of e	ciency� They are populated with constructs tailored
for ease of expression� rather than ease of implementation �in contrast to programming
languages� whose makeup generally reverses these priorities�� This frees the speci�er to
more readily state what the system is to do� without the need to dictate how it is to do
it� Mechanical assistance can be brought to bear in the task of deriving a satisfactorily
e	cient implementation from such a speci�cation �this is the primary role of program
transformation techniques�� In any system development process that strives to bridge the
gap between informal desires residing in peoples
 heads and the programs that implement
those ideas� formal speci�cations can serve as a crucial stepping stone�

��� Systems Exhibiting �Behaviors�

In these notes I report on a speci�cation language�Gist� designed for specifying systems
that exhibit ongoing behaviors� Examples of such systems include a package router �a
mechanism to sort postal packages into one of several bins depending upon each package
s

�� Martin S
 Feather

destination�� an elevator mechanism for transporting passengers to their destinations in
a multi�story building� and a library database system to keep track of a lending library
s
books� The complexity of such systems often lies in the complexity of their ongoing inter�
actions with their environments� As will be shown� the goal of supporting the speci�cation
of such �behaviors
 motivates the makeup of the speci�cation language Gist� Tasks that
do not exhibit such behaviors may be better speci�ed in a di�erent style of language�
For example� sorting� searching� parsing� and uni�cation can all be conveniently char�
acterized as functions which compute an output given some input for these� a purely
applicative language �no side e�ects� seems appropriate for the purposes of speci�cation�
In contrast� Gist is founded on the notion of state� and state changes� the very antithe�
sis of the applicative style� Nevertheless� the virtues of speci�cation apply across many
di�erent styles of tasks� the clarity of speci�cations promote understandability� analysis
and modi�cation in contrast� implementations
 interwoven nature promotes e	ciency at
the expense of these other properties�

��	 What Follows

These notes are structured as follows��

Section�
 a simple example on which to demonstrate the Gist style of speci�cation�
Section	
 a more complete version of the simple example introduced in Sect� �� This

more complete version raises some issues that have relevance to formal speci�cation�
Section�
 description of another problem� that of elevators serving passengers in a

multi�story building� The Gist speci�cation of this problem is shown� reinforcing the
style of speci�cation and use of speci�cation language constructs introduced in the
package router problem�

Section�
 a look at the initial stages in the development from a speci�cation of the
system as a whole towards the speci�cations of the individual components of that
system� a necessary precursor to implementation of those components� This is illus�
trated upon the elevator problem� where the interfaces between elevator system and
passengers are derived at the same time as the system�wide requirements are divided
into pieces and allocated to individual components�

Section
 a brief report upon the work that has accompanied the development and use
of Gist� and the relationship of this style of speci�cation to other approaches and
techniques in the broader research community�

� An Example � the Ideal Package Router

The �rst example is an idealized version of the �package router
 problem� The full form
of this problem will be presented later in Section �� The reasons for starting with an
idealized version are twofold� �rst� it serves as a small and simple example with which
to illustrate the Gist style of speci�cation � simultaneously introducing both a complex
example and the details of a speci�cation language at the same time would probably be
overwhelming second� it re�ects a plausible approach to the design of such a system �
starting by describing an idealized version of the system we would like to implement�

Fig� �� Package router

The package router is a system for distributing packages into destination bins�
Packages arrive at a source station at the top� and are fed into the network�

which is a binary tree consisting of switches connected by pipes� The terminal
nodes of the binary tree are bins�

Once fed from the source station into the system� each package moves down�
ward through the pipes and switches until it reaches a bin� Each package has
some particular bin as its desired destination� and the task of the system is to
set the switches so that each package reaches its destination bin� The setting of
a switch cannot be changed while a package is present in the switch �for fear of
damaging the package��

��� Overall Issues of Speci�cation

The ultimate goal is to develop the software to control the package router
s switches�
We begin by formally specifying the entire package routing system as a way to implicitly
specify the behavior required of the switch controller� Our speci�cation describes packages
arriving at the source� being released into the topmost pipe� and moving through the
routing mechanism via pipes and switches� Requirements such as packages getting to
their correct destination bins� and switches not being changed while packages are in
them� will be included� Our intent in specifying a system such as the package router is
to describe all the possible and desirable behaviors of that system�

Denotation of a Gist Speci�cation� A speci�cation denotes a set of behaviors� where a
behavior comprises a sequence of transitions between states� The intuition behind this
terminology is explained next�

�	 Martin S
 Feather

By behavior we mean a sequence of transitions� For example� when specifying the
package router� a behavior will involve transitions such as a package arriving at the
source� followed by a switch
s setting changing� then the package moving into the pipe
that emerges from the source� etc�

Each behavior comprises a sequence of states� linked by transitions� Think of a state
as a �snapshot
 of the entire system at some moment� For example� Fig� � shows the
system in a state in which there are several packages present �one at the source� one in a
pipe� several in bins�� The locations of all these packages� their desired destinations� the
settings of switches� indeed� the topology of the entire package routing network� comprise
the information in that state� A transition is one or more changes from one state to the
next� For example� the topmost switch could change from being set to direct packages
rightwards to instead direct packages leftwards� The package in the source could move
downward into the topmost pipe� Within a single transition there must be at least one
such change� and possibly many�

The speci�cation denotes a set of behaviors� making it possible to model systems
with many possible and desirable behaviors� For example� in the package router system�
some behaviors would involve a package arriving at the source with the leftmost bin as
its destination� while other behaviors would involve a package arriving at the source with
some other bin as its destination� Another source of variation comes from the switches
within the system� which are free to change their settings at any time� provided only that
packages get routed to their destinations� The former example �alternative destinations of
a package arriving at the source� illustrates variability in the environment of the system
we are to implement� whereas the latter �switch settings� illustrates variability in the
acceptable behaviors of the portion to be implemented� Both of these are manifest as
multiple behaviors in the denotation of the speci�cation�

Closed�world Nature of Speci�cation� Notice that in describing the package router� we
describe not only the portion to be implemented � switches � but also �some of� the
environment in which that portion resides � packages arriving at the source and moving
through the router� In this way� all constraints imposed on the implementation by its
environment are made explicit� as is all information on which it can rely� We call this a
�closed system
 style of speci�cation� because the speci�cation denotes an entire system
whose behaviors can be examined without reference to a larger� unspeci�ed� environment�

For simple input�output tasks� closed system speci�cation is trivially achieved� for
example� the speci�cation of a square�root program stating that its input must be a non�
negative number� For systems with ongoing behavior� however� there is typically much
more choice in just how much of their environment to model in the speci�cation� Often
the speci�cation can be clearer if more than the absolute minimum of the implementa�
tion
s environment is included� For example� formal speci�cation of the switch control
mechanism could� as a bare minimum� comprise only the switch�setting�changing reac�
tions required in response to the arrival of packages at various locations� It would be hard
to discern from such a speci�cation whether or not the mechanism would in fact route
packages to their destination bins� In contrast� our speci�cation will state this directly
as a property required of the whole system�

Behavior Oriented Speci�cation in Gist ��

Generate and Test Style of Speci�cation� There is one more aspect that permeates the
style that we recommend for systems of ongoing behavior� namely the adoption of a
�generate and test
 style of speci�cation� We �nd it convenient to have our speci�cation
describe a set of straightforward possible behaviors� and use constraints to rule out the
undesirable ones� For example� the core of our speci�cation of the router will describe all
possible routing behaviors� those in which packages get routed to the wrong bins as well
as those in which packages get routed to the right ones� We then impose constraints on
these behaviors� to discard all those that do not satisfy our requirements �including the
one that all packages reach their desired destination��

This generate�and�test style is not new consider non�deterministic accepting au�
tomata� Also� consider the well�known speci�cation of sorting as being the generation of
all possible permutations of the input� followed by the discarding of all but the ordered
one�s�� We merely apply this same principle to the speci�cation of ongoing behavior�

Structure of a Gist Speci�cation� The subsections that follow introduce the details of
speci�cation in Gist� These are organized into three areas� corresponding to the three
main portions of a Gist speci�cation�

� declarations of the contents of the states that make up a speci�cation
s behaviors
�Sects� ��� and �����

� top�level statements that produce the transitions between states� and thus give rise
to the behaviors denoted by the speci�cation �Sect� ����� and

� constraints that serve to discard unwanted behaviors from the denotation �Sect� �����

How these portions together determine the denotation of a Gist speci�cation is presented
in Sect� ���� and �nally the uses of Gist
s constructs in the package router example are
summarized in Sect� ����

Implementation of a Speci�cation� A Gist speci�cation denotes a set of behaviors� An
implementation of such a speci�cation must denote a non�empty subset of those behav�
iors�

��� Specifying What Goes in a State

What are the contents of the states that make up our speci�cation
s behaviors� For
the package router� states hold information modelling the routing network itself �source�
pipes� switches and bins� and how these are connected�� and the packages that �ow
through this network �their locations and destinations��

To model the state of a system� Gist provides objects� and relations among objects�
Objects in the system being speci�ed� e�g�� packages� switches and bins� are typically
modelled by Gist
s objects� Other information about the system� for example� where a
package is currently located� the direction in which a switch is currently set� are typically
modelled by Gist
s relations�

It is convenient to suppose that objects are typed� and that types can be formed into
hierarchies� as is common in many languages� For example� package and switch will be
distinct types �no object can be both a package and a switch at the same time�� Location
is a type �the possible locations of a package�� each instance of which must be exactly

�� Martin S
 Feather

one of� the source� a pipe� a switch� or a bin� Gist
s types are simpler than abstract data
types common to other languages � there is no encapsulation of operations with types�

Gist
s relations may be of arbitrary arity � binary relations are the most common�
but n�ary �for all non�negative integer values of n� are equally admissible� Relations hold
among objects� Thus to represent the location of a package� we may de�ne a binary
relation Package�Location to hold between a package and the location of that package�
Relations may be queried to �nd out whether or not they hold between objects� For
example� if p denotes a package� and l denotes a location� then Package�Location�p�l�

denotes a query of whether Package�Location holds between p and l�
We can ask arbitrary queries of relations � for example� given a package p� we may

ask for any location to which is it related by the Package�Location relation� thus�
any l � Package�Location�p� l� �
Likewise� given a location l� we may ask for any package related to it by the
Package�Location relation� thus� any p � Package�Location�p� l� �
This capacity to make arbitrary queries of relations is known as fully associative� and
is appropriate for speci�cation� There is no need to provide inverses of relations� since
the inverse query is just as easy to issue� Of course� in implementing speci�cations� the
particular relational queries that are issued� their frequency� and the desired space�time
tradeo�s� will combine to determine the appropriate structures to be used to hold the
information� and algorithms to retrieve that information�

More complex queries can be constructed by the usual logical connectives and quan�
ti�cation� For example� to ask whether all packages are located at the same location�
exists l�location � for�all p�package � Package�Location�p� l� �
�The syntax �for�all p�package � Package�Location�p� l�� is that of universal
quanti�cation � p is a quanti�ed variable whose values may range over objects of type
package the predicate of the quanti�cation � Package�Location�p� l� � follows
these quanti�ed variable declarations� separated from them by the ��� symbol� Existen�
tial quanti�cation is written similarly� e�g�� exists l�location � ����

The fragments of Gist shown below declare the types� the relations among types� and
some of the constraints on these types and relations� used to represent the objects in the
package router speci�cation� The order of declarations is not important� so I have chosen
to group the type declarations �rst� etc�

type location	

type source subtype�of location	

type pipe subtype�of location	

type switch subtype�of location	

type bin subtype�of location	

type package	

relation Package�Location�package� location�	

relation Package�Destination�package� bin�	

relation Source�Outlet�source� pipe�	

relation Pipe�Outlet�pipe� switch union bin�	

relation Switch�Outlet�switch� pipe�	

relation Switch�Setting�switch� pipe�	

Behavior Oriented Speci�cation in Gist ��

constraint Unique�Source

not exists s
�source� s��source � s
 � s�	

constraint Unique�Source�Outlet

not exists p
�pipe� p��pipe �

p
 � p� and

Source�Outlet�the source� p
� and

Source�Outlet�the source� p��	

constraint Switch�Set�To�Outlet

for�all s
�switch� p
�pipe �

Switch�Setting�s
� p
� implies

Switch�Outlet�s
� p
�	

constraint Unique�Switch�Setting

not exists s�switch� p
�pipe� p��pipe �

p
 � p� and

Switch�Setting�s� p
� and

Switch�Setting�s� p��	

In the above� location� source etc�� are de�ned as types� The states within the
speci�cation
s behaviors may contain objects of these types� The types source� pipe�
switch and bin are further declared to be subtypes of type location� so that any object
that is one of those types is also of type location�

Source�Outlet� Pipe�Outlet etc�� are de�ned as relations� The states within the
behaviors denoted by the speci�cation may contain instances of these relations holding
among objects� In declaring a relation� the types of the objects it may relate are given�
For example� relation Source�Outlet is declared to relate objects of type source to
objects of type pipe only objects of these types may be related by Source�Outlet�

Unique�Source� Unique�Source�Outlet� Switch�Set�To�Outlet and
Unique�Switch�Setting are de�ned as constraints� Constraints impose restrictions on
the behaviors that the speci�cation can denote� The Unique�Source constraint prohibits
there from being two distinct objects of type source� The Unique�Source�Outlet pro�
hibits there from being two distinct pipes to which the the source is related by relation
Source�Outlet� The Switch�Set�To�Outlet constraint prohibits each switch
s setting
from being to anything other than one of its outlets �in other words� a switch can only
be set to direct packages towards one of its outlets� not to some arbitrary location any�
where in the router�� Constraints such as these may seem trivially obvious to anyone
looking at the picture in Fig� �� but it is necessary to state them explicitly in the formal
speci�cation� For brevity� I have omitted similar constraints on the other relations �e�g��
uniqueness of location and destination for each package� the acyclic topology of the tree�
etc���

In general� a Gist constraint is expressed as a predicate in order for a behavior to be
allowed� every state of that behavior must satisfy every constraint� A behavior in which
one �or more� of the states does not satisfy a constraint is said to be �anomalous
� and

�� Martin S
 Feather

is not included in the denotation of the speci�cation this will be discussed further in
Sect� ���� Note that while these constraints restrict the topology of the router network
within each state� they do not prohibit the topology from changing from state to state �
for example� I have made no mention of any constraint prohibiting the source from being
connected to one pipe in one state� and a di�erent pipe in the next state� One of Gist
s
underlying assumptions is the so�called �frame
 property � in a transition from one state
to the next� changes take place to only the information explicitly changed all else remains
the same� Thus if nothing in the speci�cation ever explicitly changes the connectivity of�
for example� the source to a pipe� we are assured that it will remain constant throughout
every behavior� We can� if need be� write constraints that span multiple states� and so
prohibit certain transitions that we wish to exclude� We will see an example of one of
these constraints later�

Remarks� It is obvious from the above fragment of the Gist speci�cation that there are
many opportunities for syntactic abbreviations� In these notes� I generally avoid the use
of abbreviations� favoring a somewhat verbose but simple form of the language�

It is also obvious that the speci�cation of a common structure such as a binary tree is
likely something that we would wish to reuse� and so it would be worthwhile to provide
generic such de�nitions� and allow their instantiation to the particular task in hand�
Again� for simplicity this practice has not been followed in these notes � instead� the
basic form of Gist is used� with an emphasis on presenting the fundamentals of behavior
oriented speci�cation�

��	 Implicit Information � More of What Goes in States

The relations introduced earlier �Source�Outlet� etc�� must have their values explicitly
inserted and removed by the speci�cation �we will see shortly how this is done�� Gist
provides another class of relations� called implicit relations� whose values are implicitly

de�ned in terms of other information in the speci�cation� An implicit relation is de�ned
by means of a predicate expressed over the objects that could participate in the relation
� in a given state� the relation holds among those objects if and only if the predicate
is true of those objects when evaluated in that state� The fragment of Gist below shows
the de�nitions of three such relations�

implicit relation Immediately�Below�lower�location� upper�location�

iff Source�Outlet�upper� lower� or

Pipe�Outlet�upper� lower� or

Switch�Outlet�upper� lower� 	

implicit relation Somewhere�Below�lower�location� upper�location�

iff Immediately�Below�lower� upper� or

exists intermediate�location �

Somewhere�Below�lower� intermediate� and

Immediately�Below�intermediate� upper� 	

Behavior Oriented Speci�cation in Gist ��

implicit relation Dynamically�Immediately�Below

�lower�location� upper�location�

iff Source�Outlet�upper� lower� or

Pipe�Outlet�upper� lower� or

Switch�Setting�upper� lower�

The binary relation Immediately�Below is de�ned to hold between two objects
of type location� lower and upper� if and only if either the relation Source�Outlet

holds between upper and lower� or relation Pipe�Outlet holds ��� etc� In other words�
Immediately�Below captures the connectivity of the package router structure of source�
pipes� switches and bins�

Similarly� Somewhere�Below is de�ned to hold between objects lower and upper if
and only if either Immediately�Below holds between lower and upper� or there ex�
ists some location intermediate for which Somewhere�Below holds between lower and
intermediate� and Immediately�Belowholds between intermediate and upper� that
is� Somewhere�Below is the transitive closure of Immediately�Below� For recursively de�
�ned relations such as Somewhere�Below� Gist assumes least �xpoint semantics where
the ordering is inclusion of relations�

Finally� relation Dynamically�Immediately�Below is similar to Immediately�Below�
except for the case of switches� where it uses Switch�Setting rather than Switch�Outlet

to determine that only the pipe to which that switch is currently set is in the
Dynamically�Immediately�Below relation with that switch�

Implicitly de�ned relations can be queried just as regular� non�implicit� relations� for
example� within the de�nition of Somewhere�Below is a query of Immediately�Below�

Remarks� It is purely an implementation concern as to when and how to compute the
values of implicit relations �at one extreme we might compute their values only when
necessary� i�e�� on evaluating a speci�c query of such a relation at the other extreme we
might store and continually update their values so as to keep them up�to�date as changes
occur to the information in terms of which they are de�ned�� The various tradeo�s
between such implementation alternatives may be of crucial importance in achieving a
su	ciently e	cient implementation� but have no relevance to our aim of speci�cation�

��� Specifying Transitions Between States

So far we have considered only the information that resides in individual states� What
happens in the transitions between states�

Primitive Changes in Transitions� Since the contents of a state comprise typed objects
and relations among those objects� transitions are comprised of a set of primitive changes
to these� In Gist� the allowed primitive changes are to�

insert that a relation holds among objects �if the relation already holds among those
objects� then such an insertion is legal� and is a no�op� i�e�� makes no change��

remove that a relation holds among objects �if the relation does not hold among those
objects� then such a removal is legal� and is a no�op� i�e�� makes no change��

�� Martin S
 Feather

create a �new� object of a given type �this necessarily results in an object that is guar�
anteed to have not existed in any prior state�� and

destroy an existing object �destruction of an object automatically removes all the re�
lations holding of that object� thus saving the speci�er from the tedium of explicitly
writing all the removals��

For example� insert Package�Location�p� l
� is a primitive change� inserting the
relation Package�Locationbetween the package referred to by p and the location referred
to by l
�

Simultaneous Primitive Changes in Transitions� In a transition from one state to the
next� at least one such primitive change� and possibly many� take place� In the case of
multiple changes taking place in the same transition� they are assumed to take place
simultaneously� i�e�� there is no �intermediate
 state in which some but not all of those
transitions have taken place� Gist
s atomic construct is used to group primitive changes
to have them occur simultaneously� for example�
atomic finsert Package�Location�p� l
�	 remove Package�Location�p� l��g
simultaneously inserts that the relation Package�Location holds between package p and
location l
� and removes that it holds between p and l��

Gist requires that following a transition� all the �inserted
 relations hold in the result�
ing state �e�g�� following a transition in which insert Package�Location�p� l� occurs�
Package�Location�p� l� holds�� all the �removed
 relations do not hold in the resulting
state� all the �created
 objects exist� and all the �destroyed
 objects do not exist� Thus�
Gist does not allow the simultaneous insertion and removal of the same relation among
the same objects� e�g��
insert Package�Location�p� l� and
remove Package�Location�p� l� cannot both occur as primitive changes within a sin�
gle transition� We say that such a transition is �anomalous
� and is not allowed within any
behavior denoted by the speci�cation� We will return to the precise meaning of anoma�
lous transitions shortly �Sect� ����� Likewise� it is anomalous for a transition to insert
some relation involving an object that does not exist in the resulting state �which could
occur either because the object is destroyed in that transition� or because it didn
t exist
beforehand� and is not created by that transition�� e�g��
insert Package�Location�p� l� and
destroy p cannot both occur as primitive changes within a single transition� Finally� it
is anomalous to create and destroy the same object in the same transition�

Transitions in the Package Router� For the package router� transitions include arrival
of a package at the source� movement of a package through the router� and changing of
switch settings�

Arrival of a package at the source can be modelled by the creation of a �new� object
of type package� whose location is set to the source� and whose destination is set to
some bin� Since a package
s location and destination are represented by the relations
Package�Location and Package�Destination respectively� setting these values is done
by inserting that the relation Package�Location holds between the package and the

Behavior Oriented Speci�cation in Gist ��

source� and inserting that the relation Package�Destination holds between the package
and some bin� as follows�

atomic � create p�package	

insert Package�Location�p� any source�	

insert Package�Destination�p� any bin� �

In the above� create p�package creates a �new� object of type package locally named
p the �rst of the insert statements inserts the relation Package�Location between
the new package and any object of type source � since there
s only one source in the
package router� this is unambiguous the second of the insert statements inserts the
relation Package�Destination between the new package and any bin� Since there are
many objects of type bin� there are many possible evaluations of this statement � one for
each bin� The speci�cation denotes a di�erent behavior for each possible evaluation� We
refer to this multitude of possibilities as nondeterminism� The expression any bin has
multiple possible values �any one of the several bins�� When such an expression is used
within a primitive statement� as in insert Package�Destination�p� any bin� above�
the result is a di�erent behavior for each choice� An expression may have no values� for
example� if in some state there are no packages located at location l� say� then
any p�package � Package�Location�p� l�

is an expression without any values� A primitive statement that used the value of such
an expression� would be �anomalous
� e�g��
insert Package�Location� any p�package � Package�Destination�p� l
�� l��

would be anomalous if there were no package with destination l
� Again� we defer further
discussion of �anomalous
 transitions until Sect� ����

Top�level Statements Causing Transitions� A Gist speci�cation comprises declarations
of types and relations� constraints that prohibit certain states from arising� and� as we
focus on now� top�level statements that cause transitions to take place� i�e�� generate the
speci�cation
s behaviors�

A Gist speci�cation without any top�level statements would have as denotation a set
of behaviors each comprising a single state� e�g�� the state of the package router at a
single moment in time� It is by including top�level statements that a Gist speci�cation
denotes behaviors with multiple states� Each top�level statement in the speci�cation
begins execution in the starting state� As they execute� they contribute the primitive
changes that comprise the transitions in the behavior� When all these statements have
completed their execution� the behavior is complete� For systems such as the package
router� we often make use of non�terminating statements to model the potentially in�nite
behavior of the router� which is supposed to continue to route packages for ever�

In the case of multiple statements executing concurrently� Gist assumes an interleav�
ing and merging semantics� that is� in the transition from the current state to the next� at
least one� and possibly many� of the currently executing statements is�are executed until
it�they contribute a primitive change �or� through execution of an atomic statement� a
set of primitive changes� all the contributed primitive changes are unioned together to
form the transition to the next state� Unions of primitive changes that constitute �anoma�
lous
 transitions �e�g�� the simultaneous insertion and removal of the same relation among
the same objects� are omitted from the denotation of the speci�cation� In the case of

��� Martin S
 Feather

multiple statements� every possible non�anomalous combination of at least one of those
statements is taken� producing a set of possible next transitions this is manifest as a
branching in the behavior tree � from the current state� there may be many possible
continuations� Note that several statements can contribute to the same transition� i�e��
Gist not only interleaves multiple statements� but also merges them�

Top�level Statements in the Package Router� The sources of activity in the package
router network are packages arriving at the source and moving through the router� and
switches in the router changing their settings�

Arrival of packages at the source is modelled as a continuous loop in which there is
choice of whether or not to create a new package at the source�

loop while true

do choose � null	

atomic � create p�package	

insert Package�Location�p� any source�	

insert Package�Destination�p� any bin� � �

Gist
s loop statement is similar to that of conventional languages � it directs the
execution of the loop body� Other conventional constructs that Gist uses include the
conditional statement�
if �predicate� then �statement� else �statement� �
the sequential statement�
begin �statement� 	 �statement� 	 ��� end �
the case statement� and so on� Ultimately these bottom�out at Gist
s primitive statements
that denote transitions� which make changes to the relations among objects� and create
or destroy objects�

There are couple more Gist�speci�c statements used in the above�
The statement null means to do nothing�
The statement choose f ��� g is another compound statement� o�ering the nondeter�
ministic choice of any of its constituent statements� In this case� the choice is between
doing nothing� and creating a new package at the source�

By placing the above loop statement as a top level statement within the speci�cation�
its execution commences in the starting state of the whole system�

Movement of packages through the router network is modelled as follows�

demon Move�Package�Through�Network�p�package�

when exists loc�location� next�loc�location �

Package�Location�p� loc� and

Dynamically�Immediately�Below�next�loc� loc�

do choose � null	

atomic� remove Package�Location�p� loc�	

insert Package�Location�p� next�loc� � �

Instances of Gist
s demon construct� such as this� are placed at the top level of the
speci�cation� They contribute to the transitions between states in the following manner�

Behavior Oriented Speci�cation in Gist ���

in every state� for every instantiation of appropriately typed objects in that state to
parameters of the demon such that the demon
s predicate �which follows the �when
 key�
word� is true� the demon
s statement �which follows the �do
 keyword� begins execution�
contributing its primitive changes to the transition that emerges from that state�

In the case of the Move�Package�Through�Network demon� there is one parameter
p� of type package� Thus� in every state� for every instantiation of p to some object of
type package existing in that state� the predicate is evaluated� and if true� the statement
begins execution� In this case� the predicate is that package p be located at some location
loc and there
s another location next�loc dynamically immediately below loc� The ac�
tivity is a choice of nothing� or the transition that models the movement of p from loc to
next�loc� Following the style outlined earlier� this transition is expressed as an atomic
containing a set of changes to be made simultaneously� the changes being to remove that
the relation Package�Location holds between the package and its current location loc�
and insert that it holds between the package and the next location next�loc� Recall that
bins never have any location below them� so once a package reaches a bin� it is not moved
by this demon�

The changing of switch settings is modelled similarly� as follows�

demon Change�Switch�Setting�s�switch�

when exists current�setting�pipe� other�setting�pipe �

Switch�Setting�s� current�setting� and

Switch�Outlet�s� other�setting� and

other�setting � current�setting

do choose � null	

atomic� remove Switch�Setting�s� current�setting�	

insert Switch�Setting�s� other�setting� � �

By placing the declarations of these demons in the speci�cation� along with the looping
statement modelling package arrival at the source� we now have modelled all the activity
of the package router�

Remark� We could equivalently have used a top�level statement in the form of an in�nite
loop over all the switches� rather than a demon� to do this changing of switch settings�
The choice of construct is a matter of convenience and style�

��� Constraints on Behaviors

We have already introduced some constraints on the possible behaviors of the package
router � for example� that the switches be set to one of their outlet pipes� There are other
constraints that must be added� namely that packages eventually reach their destination
bins� and that no switch setting be changed while there is a package located in that
switch� These may be expressed as follows�

constraint Packages�Reach�Their�Destinations

for�all p�package� destination�bin �

Package�Destination�p� destination� implies

��	 Martin S
 Feather

� exists s�past�present�or�future�state �

Package�Location�p� destination� as�of s �	

constraint Switch�Setting�Not�Changed�While�Package�Present

for�all s�switch� p
�pipe� p��pipe � p
 � p� and

Switch�Setting�s� p
� and � Switch�Setting�s� p�� as�of next �

implies Empty�Switch�s�	

implicit relation Empty�Switch�s�switch�

iff not exists p�package � Package�Location�p� s� 	

The expression of each of these constraints makes use of the ability to make queries
about states anywhere in the current behavior� not just the state in which the query
itself is being evaluated� In particular� exists s�past�present�or�future�state �

��� quanti�es over all states in the behavior� allowing us to ask whether there exists
some state s in which the package is located at its destination in that state ��as�of s

causes the query that precedes it to be evaluated in the state s�� In the second constraint�
next is used to refer to the immediately following state� The constraint requires that in
any transition in which a switch
s setting changes �recognized by it being set to pipe p

in one state� and a di�erent pipe p� in the next state�� then the switch must be empty
in the �rst of those states� Note that while this disallows changing setting if a package
is present at the start of that transition� it does allow changing if a package enters the
switch simultaneously with the setting change � if the latter is also to be prohibited�
simply extend the right hand side of the implication to read�
Empty�Switch�s� and �Empty�Switch�s� as�of next��
The de�nition of Empty�Switch is given as an implicit relation�

Many speci�cation languages provide similar abilities� in the form of temporal op�

erators such as eventually and next �state�� Gist is not particularly progressive in this
regard� merely making use of this capability as useful for speci�cation�

Remark� Since there is only one place in the speci�cation where switches change their
settings� we could equally well have written this as a precondition on the switch setting
changing� thus�

demon Change�Switch�Setting�s�switch�

when exists current�setting�pipe� new�setting�pipe �

Switch�Setting�s� current�setting� and

new�setting � current�setting

do choose � null	

precondition not exists p�package � Package�Location�p� s�

atomic� remove Switch�Setting�s� current�setting�	

insert Switch�Setting�s� new�setting� � �

�� Denotation of the Package Router Speci�cation

We have completed all the essential elements of the idealized package router speci�cation�

Behavior Oriented Speci�cation in Gist ���

� Type and relation declarations de�ne the possible objects and relations among objects
that can occupy states

� Constraints prohibit undesired states from occurring and
� Top�level statements� which begin execution in the initial state� and demons� which

begin execution of their statements whenever their predicates are true� provide the
transitions from one state to the next�

Thus in our example� the loop statement that creates packages at the source� to�
gether with the demons that cause switches to change their settings and packages to
move through the network� generate the possible behaviors of the package router speci��
cation� As stated earlier� Gist semantics interleave and merge these statements
 primitive
changes to form the transitions between states �e�g�� a switch changes its setting� followed
by creation of a package� followed by that package moving into the topmost pipe simul�
taneously with a switch changing its setting� and so on�� As in this system� there are typ�
ically many ways of performing such interleavings and mergings� o�ering a very potent
source of nondeterminism� The various sources of nondeterminism � expressions with
multiple values used within primitive statements� the choose statement� and �nally the
interleaving and merging of the multiple statements and demons� all combine to generate
a multitude of possibilities� in line with the �generate
 aspect of our generate�and�test
philosophy�

By de�nition� the denotation of a Gist speci�cation is the subset of the possible
behaviors which are not �anomalous
� Recall that a behavior will be anomalous if�

� any of its states violates a constraint�
� any of its transitions
 activities violate any of their preconditions or postconditions

�semantically� these can be treated as �point constraints
��
� any of its transitions involve the simultaneous insertion and removal of the same

relation among the same objects� or
� any of its transitions involve the simultaneous creation and destruction of the same

object� or
� any of its transitions involve the insertion of a relation on an object that does not

exist in the end�state of that transition�

This is illustrated diagrammatically in Fig� �� where the behaviors are drawn as a tree
whose root �at the top� is the common initial starting state� and whose paths from root
to leaf correspond to behaviors the result of �pruning
 to meet the constraints is shown
on the right� where all the behaviors containing any bad states �states that violate one or
more constraints� have been omitted� Observe that sometimes whole subtrees get lopped
o� by this process�

Thus our idealized package router speci�cation denotes all possible behaviors in which
switches change or retain their settings �changing only when no packages are present��
while packages get created at the source and move downwards through the router to
eventually arrive at their destination bins �such that when moving out of a switch� a
package moves to the pipe to which that switch is currently set��

This illustrates the �generate�and�test
 style of speci�cation � nondeterminism is used
to straightforwardly express a range of possible behaviors� while constraints are used to
discard those behaviors which are physically impossible �e�g�� a switch being set to a pipe

Fig� �� Constraints and pruning

that is not one of its outlets�� or undesirable �e�g�� packages not eventually reaching their
destinations��

��� Summary of Constructs Used in the Speci�cation

The various Gist features used in the speci�cation of the idealized package router were�

types � used to represent the di�erent kinds of objects in the package router �e�g��
locations� packages��

relations � used to represent information about the state of the objects in the system
�e�g�� package locations� switch settings��

implicitly de�ned relations � used to de�ne information in terms of other informa�
tion �e�g�� to de�ne whether one location is �below
 another��

primitive statements � used to express the changes that take place in moving from
one state of the system to the next �e�g�� movement of a package change of a switch
setting��

compound statements � used to group together statements� We saw a simple loop
statement� an atomic statement� and a choose statement� Sequentiality is provided
by begin ��� end blocks of statements �not used in the examples of this paper��
The atomic statement groups together statements so that execution of the atomic

Behavior Oriented Speci�cation in Gist ���

statement simultaneously executes all of its primitive statements within the same
transition �e�g�� creation of a package object simultaneously with the assertion of
that package
s location and destination�� Thus the atomic statement cannot include
sequential statements� nor most loop statements �however� simple forms of loops
that perform an atomic action on each member of a set of objects can be so included�
meaning the action is performed simultaneously on each of the objects in the set��

demons � used to cause some activity to take place whenever some condition is true
�e�g�� a package to move to the next location��

temporal reference � used to extract information from arbitrary states within the
current behavior �e�g�� to ask whether a package is ever located at its destination��

nondeterminism � used to generate a number of possible behaviors �e�g�� a package
is created with any one of the bins as its destination a switch
s setting may be left
alone� or changed a package not already at a bin may stay in place or move to the
next location down in the router��

constraints � used to restrict the behaviors denoted by the speci�cation �e�g�� to just
those in which packages eventually reach their destinations�� In conjunction with
nondeterminism� they support a �generate and test
 style of speci�cation�

� The Complete Package Routing Problem

The package router problem was constructed by representatives of the process control
industry to be typical of their real�world applications� A study of various programming
methodologies was done using this as the comparative example ����� The complete de�
scription of the problem is as follows�

The package router is a system for distributing packages into destination bins�
A source station at the top feeds packages one at a time into the network�

which is a binary tree consisting of switches connected by pipes� The terminal
nodes of the binary tree are the destination bins�

When a package arrives at the source station� its intended destination �one of
the bins� is determined� The package is then released into the pipe leading from
the source station� For a package to reach its designated destination bin� the
switches in the network must be set to direct the package through the network
and into the correct bin�

Packages move through the network by gravity �working against friction�� and
so steady movement of packages cannot be guaranteed so they may �bunch up�
within the network and thus make it impossible to set a switch properly between
the passage of two such bunched packages �a switch cannot be set when there is
a package or packages in the switch for fear of damaging such packages�� If a new
package
s destination di�ers from that of the immediately preceding package� its
release from the source station is delayed a �pre�calculated� �xed length of time
�to reduce the chance of bunching�� In spite of such precautions� packages may
still bunch up and become mis�routed� ending up in the wrong bin the package
router is to signal such an event�

Only a limited amount of information is available to the package router to
e�ect its desired behavior� At the time of arrival at the source station but not

��� Martin S
 Feather

thereafter� the destination of a package may be determined� The only means of
determining the locations of packages within the network are sensors placed on
the entries and exits of switches� and the entries of bins these detect the passage
of packages but are unable to determine their identity� �The sensors will be able
to recognize the passage of individual packages� regardless of bunching��

For the purposes of introducing Gist
s features� we omitted some of the details of the
complete version of the package router problem� We now discuss these details� and the
ways in which they complicate the speci�cation�

	�� Accommodating Misrouting of Packages

The complete problem makes it clear that there are circumstances in which the correct
routing of every package cannot be guaranteed� Hence the constraint
Packages�Reach�Their�Destinations that we included in our idealized version should
not be included in the complete version� because it would make the implementation task
impossible� In essence� there is nothing the implementation can do� given that it controls
only the setting of switches� to correctly route every package in the face of the potential
irregularity of package movement�

Instead� we would have to adopt a weaker constraint� for example�

Prohibit an empty switch being set �or left set� the wrong way with respect
to a package in the pipe entering that switch�

This can be expressed in Gist as follows�

implicit relation Switch�Set�Wrong�Way�For�Package�s�switch� p�package�

iff exists b�bin� pi�pipe �

Package�Destination�p� b� and Somewhere�Below�b� s� and

Switch�Setting�s� pi� and not Somewhere�Below�b� pi�	

constraint Prohibit�Malicious�Empty�Switch

not exists s�switch� p�package� b�bin� pi�pipe �

Package�Location�p� pi� and

Pipe�Outlet�pi� s� and

Empty�Switch�s� and

� Switch�Set�Wrong�Way�For�Package�s� p� as�of next �

The �rst de�nition is of a relation that holds of a switch and package if the switch lies
on route to the package
s destination bin� but is currently set the wrong way� The second
de�nes a constraint that prohibits the transition from a state in which there
s a package
immediately above an empty switch� to a state in which the package is in the switch� but
the switch is set the wrong way for that package�

In the problematic cases� when packages get bunched up� this constraint favors the
correct routing of the �rst package of the bunch� This might be inappropriate� e�g��
favoring the majority of packages sharing the same destination bin �when a bunch of more
than two packages is formed� might be preferred� Presumably the �correct
 strategy for
routing will depend on the distribution of package arrivals �their times and destinations�
and package movement through the network�

Behavior Oriented Speci�cation in Gist ���

Remark� The above constraint has been carefully crafted to identify the very last oppor�
tunity to change �or leave correctly set� a switch
s setting for an approaching package�
based upon the constraint that prohibits changing the switch setting once there
s a pack�
age actually present in the switch� This careful crafting is indicative that either the
constraint itself is too �implementation
 oriented� or that there should be a better way of
specifying it �which perhaps Gist is not capable of stating�� This remains �in my mind�
an interesting open issue� as does the connection to real time speci�cation�

In any event� the complete speci�cation calls for the signalling of misrouting� which
can be easily speci�ed thorough a Gist demon� thus�

demon Signal�Misrouting�On�Arrival�p�package�

when exists b�bin � Package�Location�p� b� and

not Package�Destination�p� b�

do Signal�Misrouting�p� b�

where we assume that Signal�Misrouting�p� b� models the activity of signalling�

	�� Availability of Information

Note that the Signal�Misrouting�On�Arrival demon above queries a package
s des�
tination �Package�Destination�p� b�� at the time the package reaches a bin� This is
perfectly acceptable for speci�cation purposes � the demon merely speci�es when sig�
nalling takes place� However� for implementation purposes� it may not be possible to
query the destination of a package arriving at the bin� and an implementation would
have to �nd some other way of computing the information necessary to know when to
do the signalling� Indeed� in the description given earlier of the complete package routing
problem� this is precisely the case� An implementation would presumably read packages

destinations as they arrive at the source� and keep track of them as they move down
through the router� so as to be able to know when to signal misrouted arrivals�

The general point is that in a formal speci�cation� we separately state the behaviors
required of the router� and the limits on availability of information� In specifying the
behaviors required� we are not constrained in any way by these limits we can continue
to express our behavioral speci�cation in terms of information drawn from anywhere in
the system�

Expressing the limits on availability of information is relatively easy� The imple�
mentation is allowed to know the structure of the package router �i�e�� type location

and its subtypes source� pipe� switch and bin� relations Source�Outlet� Pipe�Outlet�
Switch�Outlet and Switch�Setting�� Additionally� it can know of the arrival of a pack�
age at the source� and� in the state following that transition� the destination of such a
package� i�e�� it can know the value of the bin b for which Package�Destination�p� b�

is true� for just�arrived package p� Finally� it can know of the passage of packages past
sensors� i�e�� the occurrence of transitions when a package moves into � out of switches�
and into bins �and� presumably� the identity of those locations��

In implementing the control mechanism we would be concerned with how to deduce
from this available information the information necessary to set switches as required and
issue misrouted signals� As we have stated before� the purpose of the speci�cation is

��� Martin S
 Feather

merely to state the requirements� not to do this implementation �however� see the next
section for related comments��

	�	 The Intertwining of Speci�cation and Implementation

Balzer and Swartout have pointed out ���� that the natural�language statement of the
package router problem already mixes implementation with speci�cation� An example
is the recognition that misrouting is inevitable given the vagaries of package movement
through the router� Similarly� the sensors provide enough and just enough information to
permit an implementation of the switch controller� Their conclusion is that the processes
of �speci�cation
 and �implementation
 are not as separable as we would like to believe�
and that development must take into account� in fact� support� such interleaving� This
does not detract from the need for speci�cation languages � we still need to be able to
represent speci�cations and their intermediate versions as implementation concerns are
taken into account�

� The Elevator Example

I now consider another problem� that of elevators ��lifts
 in British terminology� in a
multi�story building� used by passengers to get to their destination �oors� In a very
abstract sense� this is similar to the package router problem� insofar as they both concern
the transportation of objects to their destinations� Thus by presenting �portions of� the
Gist speci�cation of elevators� this should reinforce the message of how to use Gist
s
constructs for speci�cation� Additionally� this example will serve as illustration for the
following section
s consideration of the development from speci�cation of the system as
a whole towards speci�cation of the individual pieces� and the interfaces among them�

Following the manner in which we speci�ed the package router� we may specify the
elevator controller by specifying a closed system involving the activities of elevators
�moving between �oors and opening�closing their doors� and passengers using those
elevators �entering and exiting�� The interleaving of these capabilities denotes a large
set of transportation behaviors� Constraints prune this set� eliminating both physically
impossible behaviors �e�g�� ones involving passenger entry through a closed door�� and
undesirable behaviors �e�g�� a passenger getting farther from his�her destination��

type floor
��topfloor	

type elevator	

type passenger	

relation AtFloor�elevator� floor�	

relation DoorsOpen�elevator�	

relation Location�passenger� floor union elevator�	

relation Destination �passenger� floor�	

loop while true

do choose � null 	

Behavior Oriented Speci�cation in Gist ���

atomic � create p�passenger	

insert Location�p�any floor�	

insert Destination�p�any floor� � �	

demon passenger�activity�p�passenger�

when true

do choose

� null	

precondition exists f�floor� e�elevator �

Location�p� f� and

�not Destination�p� f�� and

AtFloor�e� f� and DoorsOpen�e�

atomic � insert Location�p� e�	 remove Location�p� f� �	

precondition exists f�floor� e�elevator �

Location�p� e� and DoorsOpen�e� and

AtFloor�e� f�

atomic � insert Location�p� f�	 remove Location�p� e� � �	

demon elevator�activity�e�elevator�

when true

do choose

� null 	

precondition not DoorsOpen�e� insert DoorsOpen�e� 	

precondition DoorsOpen�e� remove DoorsOpen�e� 	

precondition �not DoorsOpen�e�� and

exists f�floor � AtFloor�e� f�

choose

� atomic �insert AtFloor�e� f�
�	 remove AtFloor�e� f��	

atomic �insert AtFloor�e� f�
�	 remove AtFloor�e� f���

�	

implicit relation FLocation�p�passenger�f�floor�

iff Location�p� f� or

exists e�elevator � Location�p� e� and AtFloor�e� f�	

constraint no�farther�from�destination

not exists p�passenger �

Abs� FLocation�p��� � Destination�p��� � �

Abs� FLocation�p��� � Destination�p��� � as�of next	

constraint capacity�of�elevator

not exists e�elevator � Size��p�passenger � Location�p�e��� �
�	

constraint each�passenger�has�unique�destination�and�location

all p�passenger � Size��f�floor � Destination�p� f���
 and

Size��l�floor union elevator � Location�p� l���
	

��� Martin S
 Feather

constraint each�elevator�always�at�unique�floor

all e�elevator � Size��f�floor � AtFloor�e� f���

The above speci�es the types that are used to model objects of the elevator world�
namely �oors �represented as integers in the range � to top�oor�� passengers and eleva�
tors� and relations used to model the relationships among those objects� e�g�� the �oor
at which an elevator is located AtFloor� the location of a passenger� either a �oor or an
elevator Location�

Passenger appearance is modelled by an in�nite loop that may choose to create a new
passenger at a �oor�

Passenger activity is modelled by a demon that� for each passenger� chooses either
to do nothing� to cause the passenger to enter a elevator �provided that the passenger
is at a �oor where the elevator is also located� and that the elevator
s doors are open��
or to cause the passenger to exit an elevator �provided that the passenger is inside the
elevator� and the elevator
s doors are open��

Passengers objects never disappear from the system � they simply remain at their
destination �oors� once they �nally get there� If this is deemed stylistically inappropriate�
it would be a simple matter to add a demon that destroyed such objects�

Elevator activity is modelled by a demon that� for each elevator� chooses either to do
nothing� to open the doors �provided the doors are closed�� to close the doors �provided
the doors are open�� or to move the elevator up or down one �oor �provided the doors are
closed�� Note that because the relation AtFloor is declared to hold between an object of
type elevator and an object of type floor� and because type floor is declared to be an
integer in the range
��topfloor� elevator activity is implicitly constrained to prohibit
movement of an elevator to a �oor not within that range�

The denotation of the speci�cation is all possible interleavings of these activities�
pruned by all the constraints� Note the use of a mixture of preconditions and constraints
to specify restrictions on the possible relationships� e�g�� that each passenger is always
located at exactly one location� either a �oor or an elevator� The possible transporta�
tion behaviors� even if quite safe� include many undesirable behaviors from the point
of view of getting passengers rapidly to their destinations� Hence some constraints are
present to further restrict the system behaviors to only those in which acceptably e	�
cient transportation of passengers occurs� e�g�� ones in which passengers never get farther
from their destinations� This last works by prohibiting the existence of a passenger whose
distance from destination in one state is less than that in the next state �note the use of
FLocation to cause this calculation for a passenger inside an elevator to use the elevator
s
�oor location to do the calculation��

The above speci�cation makes occasional use of a few constructs not introduced in
the package router example� which need explanation�
functions� Size� Abs � and ��
set�former notation� e�g�� f f�floor � Destination�p� f� g� denoting the set of all
�oors f which are destinations of passenger p� and
retrieval of values from relations� e�g�� Destination�p��� is an expression whose value
is the �oor related to passenger p by the relation Destination�

Behavior Oriented Speci�cation in Gist ���

��� Summary of Constructs Used in the Elevator Speci�cation

Gist
s features were used in the elevator speci�cation in a similar manner to the way in
which they were used in the package router� Brie�y�

types � used to represent the di�erent kinds of objects �e�g�� �oors� passengers��
relations � used to represent information about the state of the objects in the system

�e�g�� passenger locations� status of elevator doors��
implicitly de�ned relations � used to de�ne the relation FLocation between a pas�

senger and a �oor to be the �oor at which either the passenger is directly located� or
where there
s the elevator the passenger is inside�

primitive statements � used to express the changes that take place in moving from
one state of the system to the next �e�g�� change of location of a passenger change
of status of an elevator
s doors��

compound statements �used to group together statements� Again� loop� conditional�
choice and atomic statements came into play in this speci�cation�

temporal reference � used in expression of the constraint that passengers not get
farther from their destination �oors�

nondeterminism � used to generate a broad range of transportation behaviors �e�g��
choice of movement of elevators in either direction� choice of passenger activity��

constraints � used to restrict the behaviors denoted by the speci�cation to both physi�
cally possible ones �e�g�� in which passengers don
t pass through closed elevator doors�
and desirable ones �e�g� that passengers never get farther from their destinations��

� Initial Stages of Developing an Implementation

The elevator speci�cation denotes behaviors required of the closed system� comprised of
elevators and passengers� A typical implementation of this system will combine several
components� an elevator controller� in charge of all the elevators� and individual passen�
gers� We can use the system speci�cation as an implicit speci�cation of those components�
namely those which� in combination� achieve the speci�ed closed system behaviors� Thus
if the ultimate task is to develop the implementation of one or more of the components�
then an important step in that development will be the decomposition of the closed
system speci�cation into explicit speci�cations of individual components� Note that the
closed system speci�cation may be neutral with respect to which of its components we
are to implement � for example� our task might be to develop an implementation of the
elevator controller� or equally well to develop the implementation of individual passen�
gers� The latter possibility would make sense if developing a users
 guide for passengers�
or if developing an implementation for robots that are to use elevators in order to travel
between �oors in a multi�story building�

When system�wide constraints occur in a Gist speci�cation� the decomposition step
must split those constraints into pieces such that each piece can be assigned as the �re�
sponsibility
 of individual components� Thereafter� an implementation can be developed
for each component in isolation� assured that their combination will in fact achieve the re�
quired system behaviors� For example� the system�wide constraint that passengers never

��	 Martin S
 Feather

get farther from their destinations implicitly constrains both passengers and the eleva�
tor controller� In order to emerge with an implementation of the individual passengers
and�or of the elevator controller� this constraint must be decomposed into constraints
on the individual components� To reach one such decomposition� consider splitting the
original constraint into the following two constraints�
C�� passengers whose destinations lie in di�erent directions should not be in the same
elevator� and
C	� an elevator with passengers inside should not move away from any of those passen�
gers
 destinations�
The combination of C� and C	 satis�es the original constraint� Notice that C	 alone
would ensure the original constraint �since passengers would never be moved further
from their destinations�� however C� is also needed for progress� to ensure that an eleva�
tor won
t get deadlocked with passengers needing transportation in di�erent directions
inside�

Having done this decomposition� C� can be assigned as the responsibility of the
passengers� and C	 as the responsibility of the elevator controller� bringing us a step
closer towards an implementation� Of course� C� requires further decomposition in order
to emerge with constraints on individual passengers rather than on passengers as a group�
This snapshot of the development process raises several issues�

� What does it mean to say that a constraint is the responsibility of some subset of the
system
s components� We answer this fully in Sect� ���� Brie�y� only the responsible
components should need to limit their activities in order to meet the constraint�
Referring back to the package router example� we might say that the constraint
for correct routing of packages is the responsibility of the router� not the arriving
packages� packages arriving at the source must be left with complete freedom to
have any of the bins as their destinations � we would not be very happy with an
implementation of package router that could route packages correctly provided that
all the arriving packages always had the leftmost bin as their destination�

� Individual components may need access to information about other components in
order to meet their assigned constraints� For example� in order to meet constraint
C	 the elevator controller must know the direction toward the destinations of the
elevator
s passengers� This need for information may induce the need for interfaces
and associated protocols of use between the components� Continuing the example�
the �oor buttons inside an elevator are there to allow the passengers to indicate their
destination �oors to the elevator controller �from which the controller can deduce
which way to move the elevator�� This is examined further in Sect� ����

� There need not be a unique way of decomposing system wide constraints� Typically
there will be a choice of decompositions� each with its own information needs� and
hence its own set of interfaces among components� Choice of the �best
 implementa�
tion will take into account properties of these interfaces �e�g�� cost� reliability�� Indeed�
the interface needs may even motivate reconsideration of the system constraints� For
example� if we are prepared to weaken the constraint that passengers never get farther
from their destinations� we can derive an elevator system with a simpler interface�
but less expedient transportation of passengers to their destinations � a particularly
dumb elevator could repeatedly move from bottom �oor to top �oor� and back down

Behavior Oriented Speci�cation in Gist ���

again� stopping at every intermediate �oor passengers could board the elevator and
stay on board until it �nally reached their destination �oor� The only information
passengers would need is to be able to recognize when they have arrived at their
destination �oor� Choice of decompositions �of constraints� is an instance of a more
general question of design tradeo�s� and goes beyond the brief of this paper the
reader is referred to ���� ��� for further discussion of our explorations in this area�

��� Assigned Responsibility for Constraints

I �rst introduce the notion of �component
� and then address what it means for a con�
straint to be assigned as the responsibility of a component�

Components� The notion of �component
 is an addition to the Gist language features
described so far� The components of a speci�cation are some some subset of the spec�
i�cation
s objects� By declaring a type to be a component� all instances of that type
are declared as components �e�g�� by declaring type passenger to be a component� every
passenger object would be declared to be a component�� New objects can be introduced
to serve as components �e�g�� the elevator controller would be introduced and declared
as a component��

Broadly speaking� each of the activities of the speci�cation �demons and top level
statements� is associated with one component object� This has the e�ect of ascribing
each primitive change done by an activity �when it contributes that primitive change to
a transition from one state to the next� as having being done by the associated compo�
nent� For example� if the elevator�activity demon is associated with the elevator�controller
component� then every primitive transition done by that demon� namely movement of
an elevator between �oors� or opening or closing of an elevator
s doors� is ascribed as
having been done by the elevator�controller component� In the case of passengers� there
is a single passenger�activity demon� but we need to ascribe its primitive transitions to
the component that is the particular passenger entering�exiting� To do this we make
each passenger object a separate component� and associate the passenger with the cor�
responding instantiation of the demon on that same passenger� The result of this is that
a passenger
s entry into� or exit from� an elevator is ascribed as being done by that
passenger�

In the elevator example� it turns out there is the need to distinguish passenger appear�
ance from passenger interactions with elevators � passenger appearance will be left un�
constrained �akin to the package router wherein packages are allowed to arrive at any time
with any bins as their destinations�� while passenger interactions with elevators are fur�
ther constrained� Hence I introduce another component object� passenger�appearance�
associated with the to level loop statement that creates a passenger at some �oor with
some destination� Those primitive changes are ascribed as having been done by the
passenger�appearance component�

A straightforward way of indicating components and their associated activities is
shown for the elevator speci�cation� next�

type floor
��topfloor	

type elevator	

��� Martin S
 Feather

component type passenger	

component passenger�appearance	

component elevator�controller	

� � � relation de�nitions as before

loop while true

do choose � � �demon statement as before

activity�of �any passenger�appearance�	

demon passenger�activity�p�passenger�

when true

do � � �demon statement as before

activity�of p	

demon elevator�activity�e�elevator�

when true

do � � �demon statement as before

activity�of �any elevator�controller�	

� � � remainder of de�nitions as before

In the above� component is used to declare instances of type passenger to be compo�
nents� and two new objects� passenger�appearance and elevator�controller to be
components� The top�level loop statement is declared to be an activity of the
passenger�appearance component� elevator�activity demon is declared to be an
activity of an elevator�controller component �of which there will be only the one��
and invocation of the passenger�activity demon on passenger p is declared to be an
activity of that passenger component p�

The net result of all this is that every primitive change in each transition of each
behavior is ascribed as being done by one or more components �more than one arises
if the same primitive change is simultaneously contributed to the same transition� and
those changes are ascribed as being done by several di�erent components � then� each
of those components is said to have done that change this complication does not arise
in the examples considered in this paper��

Assigned Responsibility� Intuitively� when a constraint has been assigned as the respon�
sibility of particular components� only those components are to limit their activities to
prune out behaviors violating the constraint�

Recall that pruning discards behaviors from the set of possible behaviors to retain
only those that satisfy the constraints� Consider pairs of behaviors� one from the set of
behaviors retained by pruning� one from the set of behaviors discarded by pruning� They
will diverge at some state� where up to that state they have performed exactly the same
transitions� but their transitions emerging from that state di�er �i�e�� have a di�erent set
of primitive changes�� We say that pruning is achievable by a set of components if for
every such pair of behaviors �one retained� one discarded�� the transitions at their point

Fig� �� Assigned responsibility pruning

��� Martin S
 Feather

Suppose that there is a constraint that prohibited passengers whose destinations lie in
di�erent directions from being in the same elevator� and further suppose that passengers
p
 and p� have destinations in di�erent directions� Then�

� Under the plain style of constraint pruning �without considering assigned responsi�
bility�� this would discard the behavior�s� including transition t�� because it leads to
a state violating the constraint�

� If� however� the constraint were assigned as the sole responsibility of passenger p
�
then discarding only the behavior�s� including the transition t� would rely upon
component p�� which is not responsible� to make the only di�erence between the
retained transition t	 and the discarded transition t�� Instead� to meet the respon�
sibility� pruning must discard not only transition t�
s behaviors� but also transition
t	
s behaviors� This works because the responsible component� p
� does something
di�erent between every pair of discarded and retained behaviors� namely� enters� or
does not enter� the elevator� Intuitively� p
� the sole responsible component� cannot
risk entering the elevator because to do so relies upon p� to choose to not enter at
the same time�

Note that in order to prune to meet assigned responsibility constraints� it may be
necessary �as in the small example� to discard more than just the behaviors that violate
the constraint�

Outline of De�nition of Assigned Responsibility Pruning� Here follows a brief outline of
the de�nition of pruning of behaviors when constraints have been assigned responsibility�

� Assigned responsibility pruning� Given a set of behaviors� a pruning is some subset
of those behaviors� Assigned responsibility pruning of a set of behaviors is the largest
acceptable pruning of that set�

� Acceptable� A pruning is acceptable if� at every state in the tree of pruned behaviors�
pruning is pointwise acceptable�

� Tree of behaviors�A set of behaviors may be regarded as a tree of behaviors� by sharing
common initial segments of those behaviors �recall that a behavior is a sequence of
states separated by transitions��

� Pointwise acceptable� At a state in a tree of pruned behaviors� pruning is pointwise
acceptable if every transition emerging from that state is distinguishable from every
transition omitted at that state by the components responsible at that state�

� Omitted� A transition is omitted at a state within a tree of pruned behaviors if it is
is not among the transitions emerging from that state� but is among the transitions
emerging from the corresponding state in the tree of unpruned behaviors�

� Distinguishable� Two transitions are distinguishable by a set of components if their
sets of primitive changes di�er with respect to the changes ascribed to one or more
of those components �recall that a transition comprises a set of primitive changes�
and each primitive change is ascribed as having been done by some component��

� Responsible at a state� The set of components responsible at a state is the union of
the sets of components responsible for behaviors pruned at that state�

� Responsible� The set of components responsible for a behavior is the union of the sets
of components assigned responsibility for the constraints violated by that behavior�

Behavior Oriented Speci�cation in Gist ���

� Pruned at a state� A behavior is pruned at a state if that behavior is included in
the unpruned behaviors� but not included in the pruned behaviors� and the state is
the lowest �latest� state in the behavior that is among the states within the tree of
pruned behaviors�

For a more extended discussion of the de�nition and properties of such pruning� see
�����

��� Portion of Development of the Elevator System

I illustrate some of the intertwining between constraints and interfaces by showing a
portion of the early stages of the development from the elevator speci�cation towards an
implementation�

My claim is that the interfaces present in typical elevator systems are there to provide
information so as to permit the components to meet their responsibilities� For example�
the presence of buttons on each �oor to summon elevators is an interface to pass infor�
mation from passengers to the elevator controller the direction lights that indicate which
way an elevator will move are present to pass information from the elevator controller to
passengers� These interfaces arise as part of the development process from closed system
speci�cation toward speci�cations of the individual components� and ultimately their
implementations�

To investigate this� I have rationalized the design of existing elevator systems by
starting from the Gist speci�cation of Sect� �� incrementally decomposing the system�
wide constraints into pieces which can be assigned as the responsibility of individual
components� determining the information that each component needs to live up to its
responsibilities� and deducing possible interfaces that provide such information�A portion
of this development process is shown next the complete development is to be found in
����� As will be obvious� my decompositions are done in an ad�hoc manner for a more
organized approach to this �and related� activity� see �����

�� The initial constraints de�ning suitably rapid transportation are�
�a� no�farther�from�destination � a passenger must never move further from

his�her destination �oor�
�b� no�delay�to�riders � passengers riding inside elevators must not be unneces�

sarily delayed� �Unnecessary delay
 can be de�ned on a history as a contiguous
sequence of states during which a passenger was inside the elevator while the
elevator remained inactive �didn
t move� open or close its doors� or take on or let
o� passengers��

These constraints are initially assigned as the joint responsibility of the controller
and all passengers�

�� Decompose� no�farther�from�destination by�
�a� De�ning the �single�valued� Passenger Direction �P�D� of a passenger to be the

direction �up or down� in which that passenger must go to reach his�her des�
tination �oor� �More precisely� the P�D of a passenger will have no value when

� To be valid� a decomposition of a constraint must result in a speci�cation whose set of behav�
iors is a subset of the behaviors of the original speci�cation

��� Martin S
 Feather

the passenger is at his�her destination �oor� so it is either single�valued or has
no value�� This de�nitional step names a piece of information in preparation for

future steps�

�b� Choosing the implication of no�farther�from�destination� that all riders in
a moving elevator have the same P�D values� to become the explicit constraint
riders�in�moving�elevator�compatible� This is assigned as the responsibility
of the controller and all passengers�

�c� Using the introduced constraint to simplify no�farther�from�destination its
simpli�ed form is that a moving elevator with a rider must be moving in that
rider
s P�D direction�

�d� Assigning the simpli�ed form of no�farther�from�destination as the respon�
sibility of only the elevator controller� The constraint is renamed accordingly to
move�in�rider�s�P�D�

The above steps show how one of the initial system�wide constraints�
no�farther�from�destination� is decomposed� and the resulting pieces assigned as
the responsibility of individual components within the system� Continuing this process
eventually leads to the behavior and interface typical of many elevator systems�

��	 Summary of initial stages of implementation development

We have seen how the initial stages in the development from a system�wide Gist speci��
cation address the decomposition of the �closed system
 speci�cation into speci�cations
of the individual components� System�wide constraints are decomposed in order that
their pieces can then be assigned as the responsibility of the individual components� This
results in speci�cations of the individual components from which implementations can
thereafter be developed independently� assured that their combination will achieve the
behaviors desired of the system� In the course of this development� the interfaces between
components and associated protocols of use of those interfaces emerge as those required
to provide components with the information they will need to meet their individual
speci�cations�

The need for this decomposition arises fromGist
s encouragement of the closed system
style of speci�cation� together with its generate and test way of expressing behaviors� For
systems that interact in an ongoing and non�trivial manner with their environments �of
which the package router and the elevator controller are simple examples�� it is often
clearest to specify them as closed systems� and proceed with development from that
point�

� Related Work

�� Gist�speci�c Related Work

Gist was developed primarily by Bob Balzer� Neil Goldman and David Wile at ISI� based
on the principles that they �rst established for such a language ��� and their belief in the
development of software by transformation from speci�cations ���� A considerable amount
of research related to speci�cation issues has been done by these people� and the other

Behavior Oriented Speci�cation in Gist ���

past and present members of Bob Balzer
s Software Sciences Division at ISI� Dennis
Allard� Bob Balzer Kevin Benner� Don Cohen� Wellington Chiu� Lee Erman� Michael
Fehling� Steven Fickas� Neil Goldman� Lewis Johnson� Yingsha Liao� Philip London�
Matthew Morgenstern� Jay Myers� K Narayanaswamy� Bill Swartout� David Wile and
Kaizhi Yue�

Our group
s experiences with Gist� and companion e�orts work on the software de�
velopment process� are summarized in ���� Brie�y� we have found the following issues
to hold for Gist speci�cations of complex systems �and� we believe� hold for all formal
speci�cations� regardless of the language��

Hard to read � whatever the formalism� newcomers unfamiliar with it have a hard
time understanding what it means� We have experimented with tools that automat�
ically paraphrase Gist speci�cations in English ���� ���� See also the hard to write

item for further methods to present complex speci�cations�
Hard to analyze �discovering and�or proving properties of Gist speci�cations is quite

di	cult� We have built a symbolic evaluator to explore the dynamic implications of
Gist speci�cations� and hooked this to the paraphraser �mentioned above� to present
these to the reader � �� Scaling up symbolic evaluation to large speci�cations is prob�
lematic� however� Recently we have been exploring simulation together with abstrac�
tion � essentially� given a question we would like to ask of the behaviors denoted
by a speci�cation� we abstract from the fully detailed speci�cation to get a smaller
version with only those aspects relevant to the question� and then employ simulation
of that smaller version to �nd the answer ����

Hard to write � large� complex systems have large and complex speci�cations� in spite
of the advantages provided by speci�cation languages� Incremental development of
speci�cations is one way to mitigate the di	culty of construction� explanation and
modi�cation of such speci�cations ��!�� �Evolution transformations
 are our trans�
formational technology to support this process � they are transformations designed
to deliberately change the meaning of the speci�cation to which they are applied
���� ����

Hard to implement �we are not able to transform an arbitrary Gist speci�cation into
an implementation� Gist
s wide range of powerful constructs is quite hard to imple�
ment in general� although it is clear what the major subtasks of such a process must
achieve ����� We have explored the transformational implementation of some subsets
of these properties� for example� temporal reference to past states ��historical� ref�
erence� is amenable to transformational implementation ����� Another approach that
we have taken is to extract some of Gist
s features� notably the relational database
together with demons and a variation on the notion of constraints� and layer these
on top of a conventional programming language� Common Lisp �we are also working
on doing the same on top of Ada� ��!�� These ideas are incorporated into a sizable
programming environment that our group uses on a day�to�day basis �� ��

We have built an experimental environment to support requirements acquisition and
speci�cation construction within this� Gist forms the core of the common knowledge
representation language for expressing the requirements and the emerging speci�cations
���� ����

�	� Martin S
 Feather

�� Other Related Work

Other work on �behavior oriented speci�cation
 includes Milner
s CCS calculus ���� � ��
essentially a calculus for reasoning about trees of behaviors Dijkstra
s guarded commands
provide a well�grounded basis for describing and reasoning about distributed systems ����
based on this is the �action systems
 work ���� somewhat similar in style and purpose to
our Gist e�orts� The language ERAE ���� is also similar to Gist in terms of constructs
and approach to speci�cation�

Individual features of Gist derive from previous work�

� The relational data base model � espoused by �����
� Temporal logic� at least in its use to talk and reason about the past� Gist
s use of

historical reference is very close to the approach of Sernadas in his temporal process
speci�cation language� DMTLT ���!���

� Automatic demon invocation � seen in the AI languages PLANNER and Qlisp ������

� Non�determinism in conjunction with constraints � closest to non�deterministic au�
tomata theory� �����

� Operational semantics and closed system assumptions � as seen in simulation lan�
guages� ��� ����� and overviewed in �����

Since the development of Gist� there have been some continuations of some closely
related ideas�

� Formal semantics for assigning constraints as the responsibility of particular compo�
nents are given in terms of a deontic logic �����

� The role of �responsibility
 during system design has been studied further� ���� ����
� A model to support the acquisition of requirements� leading through a Gist�like spec�

i�cation towards an implementation� has been proposed and studied �����

� Conclusions and Acknowledgements

These notes have attempted to give a feel for Gist� a speci�cation language designed to
facilitate the expression of systems exhibiting complex� ongoing behaviors� There is a
growing consensus that in order to achieve major improvement in software production
and maintenance� the entire programming process must be formalized and given machine
support �see� for example� the joint report ����� The keystone of such an approach is the
formal speci�cation of the requirements of the task to be programmed� for which purpose
a speci�cation language tailored for ease of expression of such requirements is essential�

Gist has been developed by members of Bob Balzer
s Software Sciences Division at ISI�
supported by the Defense Advanced Research Projects Agency� Rome Air Development
Center� and the National Science Foundation� Views and conclusions contained in this
document are those of the author and should not be interpreted as representing the
o	cial opinion or policy of DARPA� RADC� NSF� the U�S� Government� or any other
person or agency connected with them� Thanks are due to Prof� Dr� Bernhard M"oller�
for his careful scrutiny of earlier drafts of this document�

Behavior Oriented Speci�cation in Gist �	�

References

�
 R
J
R
 Back and R
 Kurki�Suonio
 Distributed cooperation with action systems
 ACM
TOPLAS� �������������� ����

	
 R
 Balzer
 A �� year perspective on automatic programming
 IEEE Transactions on Soft�
ware Engineering� SE���������	����	��� November ����

�
 R
 Balzer and N
 Goldman
 Principles of good software speci�cation and their implica�
tions for speci�cation languages
 In Speci�cation of Reliable Software� pages �����
 IEEE
Computer Society� ����

�
 R
 Balzer� N
 Goldman� and D
S
 Wile
 On the transformational implementation approach
to programming
 In Proceedings� �nd International Conference on Software Engineering�
San Francisco� California� pages �������� October ����

�
 R
 Balzer� T
E
 Cheatham Jr
� and C
 Green
 Software technology in the �����s� Using a
new paradigm
 Computer� pages ������ November ����

�
 K
 Benner
 ARIES Simulation Component �ASC� demonstration
 In Proceedings of the
	th KBSE Conference� page 	��� McLean� VA� September ���	
 IEEE Computer Society
Press

�
 G
M
 Birtwistle� O
 Dahl� B
 Myhrhaug� and K
 Nygaard
 SIMULA Begin
 Auerbach�
����

�
 D
 Bobrow and B
Raphael
 New programming languages for arti�cial intelligence
 ACM
Computing Surveys� ������������� September ����

�
 D
 Cohen
 Symbolic execution of the Gist speci�cation language
 In Proceedings�
th
International Joint Conference on Arti�cial Intelligence� Karlsruhe� West Germany� pages
���	�� August ����

��
 D
 Cohen
 Compiling complex database transition triggers
 In Proceedings� ACM SIGMOD
International Conference on the Management of Data� Portland� Oregon� pages 		��	��

ACM Press� ����
 SIGMOD RECORD Volume ��� Number 	� June ����

��
 A
 Dardenne� S
 Fickas� and A
 van Lamsweerde
 Goal�directed concept acquisition in re�
quirements elicitation
 In Proceedings� �th International Workshop on Software Speci��
cation and Design� Como� Italy� pages ���	�
 IEEE Computer Society Press� ����
 A
substantially expanded version is to appear in Science of Computer Programming

�	
 E
W
 Dijkstra
 A discipline of programming
 Prentice Hall� Englewood Cli�s� NJ� ����

��
 E
 Dubois
 A logic of action for supporting goal�oriented elaborations of requirements
 In

Proceedings� �th International Workshop on Software Speci�cation and Design� Pittsburgh�
Pennsylvania� USA� pages �������
 Computer Society Press of the IEEE� ����

��
 M
S
 Feather
 Language support for the speci�cation and development of composite sys�
tems
 ACM Transactions on Programming Languages and Systems� ��	������	��� April
����

��
 M
S
 Feather
 Constructing speci�cations by combining parallel elaborations
 IEEE Trans�
actions on Software Engineering� ���	������	��� February ����

��
 M
S
 Feather
 Transformational implementation of historical reference
 In B
 Moller� edi�
tor� Constructing Programs from Speci�cations� pages 		��	�	
 North�Holland� ����
 Pro�
ceedings of the IFIP TC	�WG 	
� Working Conference on Constructing Programs from
Speci�cations� Paci�c Grove� CA� USA� ����� May ����

��
 M
S
 Feather� S
 Fickas� and B
R
 Helm
 Composite system design� the good news and the
bad news
 In Proceedings of the �th Annual RADC Knowledge�Based Software Engineering
KBSE� Conference� Syracuse� NY� September ����� pages ���	�
 IEEE Computer Society
Press� ����

��
 S
 Fickas and B
R
 Helm
 Knowledge representation and reasoning in the design of com�
posite systems
 IEEE Transactions on Software Engineering� ������������	� June ���	

�		 Martin S
 Feather

��
 N
 Goldman and K
 Narayanaswamy
 Software evolution through iterative prototyping

In Proceedings of the ��th International Conference on Software Engineering� Melbourne�
Australia� ���	

	�
 N
 M
 Goldman
 Three dimensions of design development
 In Proceedings� �rd National
Conference on Arti�cial Intelligence� Washington D�C�� pages �������� August ����

	�
 J
 Hagelstein
 Declarative approach to information system requirements
 Journal of
Knowledge�Based Systems� �����	���		�� September ����

		
 G
 Hommel
 Vergleich verschiedener Spezi�kationsverfahren am Beispiel einer
Paketverteilanlage
 Technical Report PDV�Report� KfK�PDV ���� Part I� Kern�
forschungszentrum Karlsruhe GmbH� August ����

	�
 J
E
 Hopcroft and J
D
 Ullman
 Formal languages and their relation to automata
 Addison�
Wesley� ����

	�
 W
L
 Johnson and M
S
 Feather
 Using evolution transformations to construct speci�ca�
tions
 In M
 Lowry and R
 McCartney� editors� Automating Software Design
 AAAI Press�
����

	�
 W
L
 Johnson� M
S
 Feather� and D
R
 Harris
 Integrating domain knowledge� requirements
and speci�cations
 Journal of Systems Integration� ��	����	�� ����

	�
 W
L
 Johnson� M
S
 Feather� and D
R
 Harris
 Representation and presentation of require�
ments knowledge
 IEEE Transactions on Software Engineering� ��������������� October
���	

	�
 P
E
 London and M
S
 Feather
 Implementing speci�cation freedoms
 In C
 Rich and
R
 Waters
� editors� Readings in Arti�cial Intelligence and Software Engineering� pages 	���
���
 Morgan Kaufmann� ����
 Originally published in Science of Computer Programming�
���	 No
 	� pp ������

	�
 R
 Milner
 A calculus of communicating systems� volume �	 of Lecture notes in computer
science
 Springer�Verlag� ����

	�
 R
 Milner
 Communication and Concurrency
 Prentice Hall� ����

��
 A
 Sernadas
 Temporal aspects of logical procedure de�nition
 Information Systems�

������������� ����

��
 J
 Smith and D
 Smith
 Database abstractions� aggregation and generalization
 ACM

Transactions on Database Systems� 	�	���������� ����

�	
 W
 Swartout
 Gist english generator
 In Proceedings� AAAI�
�� pages �������� August

���	

��
 W
 Swartout
 The Gist behavior explainer
 In Proceedings� �rd National Conference on

Arti�cial Intelligence� Washington D�C�� pages ��	����� August ����

��
 W
 Swartout and R
 Balzer
 On the inevitable intertwining of speci�cation and implemen�

tation
 Communications of the ACM� 	������������� ���	

��
 P
 Zave
 An operational approach to requirements speci�cation for embedded systems

IEEE Transactions on Software Engineering� SE������	���	��� May ���	

��
 P
 Zave
 The operational versus the conventional approach to software development
 Com�

munications of the ACM� 	��	���������� ����

This article was processed using the LaTEX macro package with LMAMULT style

